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Filtered Image (Gaussian) Noisy Image

Question: How to handle blurry artifacts and preserve image

edges in the filtered image? 
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Recap: Image Filtering

Modify the pixels in an image based on some function of a local 
neighborhood of each pixel
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Local image data
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Modified image data

Some function
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Let 𝑓 be the image,  w be the 2𝑛 + 1 × 2𝑛 + 1 kernel
weights and ℎ be the filtered output image

cross-correlation == convolution, when the kernel is isotropic

ℎ 𝑢, 𝑣 = ෍

𝑘=−𝑛

𝑛

෍

𝑙=−𝑛

𝑛

𝑤 𝑘, 𝑙 𝑓[𝑢 + 𝑘, 𝑣 + 𝑙]



Recap: Image Filtering Process
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Recap: Image Filtering Process
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Recap: Image Prior: Local Smoothness

• Local natural image regions are typically smooth or uniform
• The overall structures or texture of a natural image often has a more 

subtle and gradual variation than image noise
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• Image pixels in a small window (e.g., 5x5) usually 
are similar 

• Noise values are dramatically changing at arbitrary 
directions

• Due to noises, a noisy image have higher local 
variations than the clean image
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Both mean and Gaussian utilize local 
smoothness prior

• Mean filter assumes all pixels in a local 
window are equally important

• Gaussian filter assumes pixels that are closer 
to the target pixel are more important

Recap: Local Smoothness with Mean vs Gaussian 
filtering

ℎ 𝑢, 𝑣 = ෍

𝑘=−𝑛

𝑛

෍

𝑙=−𝑛

𝑛

𝑤 𝑘, 𝑙 𝑓[𝑢 + 𝑘, 𝑣 + 𝑙] We need to design a better kernel w for improving filtering results.



The problem with Gaussian filtering
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input

Gaussian kernel

*

*

*

output

Why is the output so blurry?



The problem with Gaussian filtering
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input

Gaussian kernel

*

*

*

output

Blur kernel averages across edges



The bilateral filtering solution: Edge-preserving
local smoothness

10

input

bilateral filter kernel

*

*

*

output

Do not blur if there is an edge! How does it do that?



Bilateral filtering
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Bilateral filtering
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Spatial weighting

1) it’s nearbyAssign a pixel a large weight if:

𝑔 𝑘, 𝑙 =
1

2𝜋𝜎𝑠
2 exp(−

(𝑘2 + 𝑙2)

2𝜎𝑠
2 )



Bilateral filtering
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Intensity range weighting

2) it looks like meand

Spatial weighting

1) it’s nearbyAssign a pixel a large weight if:

𝑔 𝑘, 𝑙 =
1

2𝜋𝜎𝑠
2 exp(−

(𝑘2 + 𝑙2)

2𝜎𝑠
2 )

𝑟𝑚𝑛 =
1

2𝜋𝜎𝑟
𝑒
−

𝑥2

2𝜎𝑟2



Bilateral filtering
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Intensity range weighting

2) it looks like meand

Spatial weighting

1) it’s nearbyAssign a pixel a large weight if:

Normalization factor

𝑊𝑚𝑛 =෍

𝑘,𝑙

𝑔 𝑘, 𝑙 𝑟𝑚𝑛[𝑘, 𝑙]



Implementation: Bilateral filtering
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Intensity range weightingSpatial weightingNormalization factor

𝑊𝑚𝑛 =෍

𝑘,𝑙

𝑔 𝑘, 𝑙 𝑟𝑚𝑛[𝑘, 𝑙] 𝑟𝑚𝑛 =
1

2𝜋𝜎𝑟
𝑒
−

𝑥2

2𝜎𝑟2

𝑔 𝑘, 𝑙 =
1

2𝜋𝜎𝑠
2 exp(−

(𝑘2 + 𝑙2)

2𝜎𝑠
2 )



Bilateral filtering vs Gaussian filtering
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Which is which?



Bilateral filtering vs Gaussian filtering
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Bilateral filtering

Gaussian filtering



Bilateral filtering vs Gaussian filtering
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Bilateral filtering
Spatial weighting: 
favor nearby pixels

Gaussian filtering



Gaussian filtering

Bilateral filtering
Spatial weighting: 
favor nearby pixels

Intensity range weighting: 
favor similar pixels
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Bilateral filtering vs Gaussian filtering



Gaussian filtering

Bilateral filtering
Spatial weighting: 
favor nearby pixels

Normalization factor

Intensity range weighting: 
favor similar pixels
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Bilateral filtering vs Gaussian filtering



Bilateral filtering vs Gaussian filtering
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Gaussian filtering

Bilateral filtering

Smooths everything nearby (even edges)
Only depends on spatial distance

Smooths ‘close’ pixels in space and intensity
Depends on spatial and intensity distance



Output Gaussian Filter Input

22

Gaussian filtering visualization



Output Bilateral Filter Input

Spatial range Intensity range
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Bilateral filtering visualization



input

s = 2

s = 6

s = 18

r = 0.1 r = 0.25
r =  

(Gaussian blur)
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Exploring the bilateral filter parameter space



The bilateral filtering solution
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input

bilateral filter kernel

*

*

*

output

Do not blur if there is an edge! 



Application: Cartoonization
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How would you create this effect?



Application: Cartoonization
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edges from bilaterally filtered image bilaterally filtered image

+ =

cartoon rendition



Application: Image Denoising with
Bilateral Filtering

• Sharper edges

• Some thin edges may be reduced

• Flat regions are not fully smoothed
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Bilateral Filtering

Noisy Image

Gaussian Filtering



Image Prior: Non-local smoothness/redundancy
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Small patches in natural images tend
to redundantly appear multiple times



Non-local means Filter

No need to stop at neighborhood. Instead search everywhere in the image.
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𝑤(𝑝, 𝑞)

𝑤(𝑝, 𝑟)

𝑤(𝑝, 𝑠)

Given a pixel 𝑓(𝑝) at position 𝑝 = (𝑝𝑥, 𝑝𝑦), the filter
uses pixels in the whole image to update 𝑓(𝑝)

ℎ 𝑝 =
1

𝑊
෍

𝑞

𝑤 𝑝, 𝑞 𝑓(𝑞)

𝑆𝑆𝐷 𝑝, 𝑞 = ෍

𝑘=−𝑛

𝑛

෍

𝑙=−𝑛

𝑛

(𝑓 𝑝𝑥 + 𝑘, 𝑝𝑦 + 𝑙 − 𝑓(𝑞𝑥 + 𝑘, 𝑞𝑦 + 𝑙))2

Weight: 𝑤 𝑝, 𝑞 = exp(−
𝑆𝑆𝐷(𝑝,𝑞)

2𝜎2
)

Sum of the squared difference between two patches

𝑊 = σ𝑞𝑤 𝑝, 𝑞 is the normalization term



Fast Implementation of Non-local Means

Scan over the whole image to compute
weights for each pixel is time-consuming

Implementation:

• set a search window (e.g., 21x21)
with the target pixel position as the
center

• only use pixels inside the window to
compute weights based on patch
similarity

Patch size (e.g., 5x5, 7x7) is much
smaller than the window size
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𝑤(𝑝, 𝑞)

𝑤(𝑝, 𝑟)

𝑤(𝑝, 𝑠)



Non-local means vs bilateral filtering

Non-local means filtering

Bilateral filtering

Spatial weighting: 
favor nearby pixels

Intensity range weighting: 
favor similar pixels (patches 
in case of non-local means)
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Bilateral Filtering

Nonlocal Means Filtering Noisy Image

Gaussian Filtering



Summary
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Gaussian filtering

Bilateral filtering

Smooths everything nearby (even edges)
Only depends on spatial distance

Smooths ‘close’ pixels in space and intensity
Depends on spatial and intensity distance

Non-local means

Smooths similar patches no matter how far away
Only depends on intensity distance



Further Reading

Chapters 3.3.1 and 3.3.2, Computer Vision: Algorithms and 
Applications, Richard Szeliski

https://en.wikipedia.org/wiki/Non-local_means
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