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Image Filtering

* Goal: generate a new image G whose pixel values are a combination
of the original pixel values F
 Enhance image quality (e.g., denoising, sharpening)
e Extract visual features (e.g., edges, contours)
* Basic computation unit in convolutional neural networks
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Noise Reduction as An Example

How was the noisy image generated?

Fli,j,cl =1I|i,j,c]+nlij, c]

i : row, j:column, c:color, n: additive noise
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Characteristics of Noises and Natural Images

Image noises:
e Random and characterized by high frequency components
 Fewer details or finer textures

Natural images:
 Both low and high frequencies that are more evenly distributed

 More textures, patterns, and shapes with gradual changes in
intensity or color
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Image Prior: Local Smoothness

* Local natural image regions are typically smooth or uniform

 The overall structures or texture of a natural image often has a more
subtle and gradual variation than image noise

* |mage pixels in a small window (e.g., 5x5) usually
are similar

* Noise values are dramatically changing at arbitrary
directions
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Image Filtering for Noise Reduction

Reduce noises by enforcing local smoothness prior

 Make each pixel in a noisy image to be similar to its local
neighborhoods

How? There are many local neighborhoods (e.g., 9 in a 3x3 window)
* A naive method: replace each pixel value with the mean value of its local

neighborhoods
2 15]3 1/9(1/9 |1/9
4 15| 1 1/9/1/9 |1/9 > 5
413 |8 1/9]1/9|1/9
Local image data Filter/kernel Modified image data
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Image Filtering Process

1/9]1/9 (1/9
1/9(1/9 |1/9
1/9|1/9 |1/9

Apply the filter to every pixel

Noisy Image
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Image Filtering Process

1/9]1/9 (1/9
1/9(1/9 |1/9
1/9|1/9 |1/9

Apply the filter to every pixel

Filtered Image
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Filtered Image Noisy Image
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Image Filtering

Modify the pixels in an image based on some function of a local
neighborhood of each pixel

105 |3 Some function
4151 # 7
1117
Local image data Modified image data

Slide credit: N. Snavely
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Linear filtering

A simple filtering: linear filtering (cross-correlation/convolution)
* Replace each pixel by a linear combination (a weighted sum) of its neighbors

The prescription for the linear combination is called the “kernel” (or
“mask”, “filter”)

105 | 3 0|0
4 16 |1 0(05]|0 > 8
118 01|05
Local image data kernel Modified image data

Slide credit: N. Snavely
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Cross-correlation

Let /' be the image, H be the kernel (of size
2k+1 x 2k+1), and G be the output image

k k
Gli,jl= Y > Hlu,v]F[i4+ u,j4+ ]
u=—kv=-—%k

This Is called a cross-correlation

operation: G — H ® F

Can think of as a “dot product” between local neighborhood and kernel for each pixel
Slide credit: N. Snavely
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Convolution

Same as cross-correlation, except that the kernel is “flipped”
(horizontally and vertically)

Z Z Hlu,v|F[t —u,j — v

u=—~kv=—
This is called a convolution operation:

Convolution is commutative and associative

G=HxF

Slide credit: N. Snavely
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Convolution

al [A] I

Kernel Flipped
Kernel F

Adapted from F. Durand
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Mean filtering
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Slide credit: N. Snavely
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Mean filtering/Moving average

Flx, y] Glz, y]

Slide credit: N. Snavely
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Mean filtering/Moving average

Flz,y] Glz,y.

Slide credit: N. Snavely
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Mean filtering/Moving average

Glz,y.

Slide credit: N. Snavely
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Mean filtering/Moving average

Glz,y.

20 30 ‘l

Slide credit: N. Snavely
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Mean filtering/Moving average

Flx, y] Glz, y]
]

Slide credit: N. Snavely
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Mean filtering/Moving average

Flz,y] Glz, y]

Slide credit: N. Snavely
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Linear filters: examples

000
0O(1|0
000

Original

Source: D. Lowe

III- THE UNIVERSITY OF TEXAS AT DALLAS 27



Linear filters: examples

0/0]|0
01110
0/0]|0
Original Identical image

Source: D. Lowe
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Linear filters: examples

000
11010
000

Original

Source: D. Lowe
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Linear filters: examples

0/0]|0
1100 —
0/0]|0
Original Shifted left by 1 pixel

Source: D. Lowe
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Linear filters: examples

1 (11
1 (1)1
1 (1)1

Original Blur (with a mean/box filter)

Source: D. Lowe
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Linear filters: examples

0[{0|O0 1 1

0O|2[0)| == — 1
S

0[{0|O0 1

Original Sharpening filter

Source: D. Lowe
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Sharpening

before

Source: D. Lowe
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Smoothing with mean filter revisited

Block artifacts appear in the outputted image because non-
relevant pixels are assigned the same weights during filtering Source: D. Forsyth
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Gaussian kernel

1 (m2+%2)
Go = 27r026 “

« If a neighboring pixel is closer to the current pixel, it will be assigned a larger weight
* The o controls the width of the kernel

Source: C. Rasmussen

I-TI- THE UNIVERSITY OF TEXAS AT DALLAS 35



Gaussian filters

O =1 pixel O =5pixels O =10pixels O =30 pixels

A Gaussian filter with a larger o will produce a more blurred image _ .
Slide credit: N. Snavely
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Mean vs. Gaussian filtering

Both mean and Gaussian utilize local smoothness prior

* Mean filter assumes all pixels in a local window are
equally important

* Gaussian filter assumes pixels that are closer to the
target pixel are more important

Source: N. Snavely
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Sharpening revisited: What does blurring take away?

- detalil

\ % mo o‘t‘p_!(f@x 5)

(This “detail extraction” operation is also
called a high-pass filter)

dw Slide credit: N. Snavely
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Filtered Image Noisy Image

Question: How to handle blurry artifacts and preserve high-
frequency details in the filtered image?
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Further Reading

Chapters 3.1 and 3.2, Computer Vision: Algorithms and Applications,
Richard Szeliski
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