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How are Images Generated?
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Geometry in Image Generation
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2D Points and 3D Points

A 2D point is usually used to indicate
pixel coordinates of a pixel

x, <—image plane

x = (z,y) € R? X =

¢ Camera center

A 3D point in the real world

vox=(x,y,2) ER® X =

<

<
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Homogeneous Coordinates

X
(z,y) = | vy (z,y,2) = | 7 — Y
z
1 z
- - I 1 ]
homogeneous image homogeneous scene 1
coordinates coordinates - T
Up to scale
Conversion i )
- - T
y Y
y | = (z/w,y/w) | = @/w,y/w, z/w)
w
- — ] w i
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Vector Inner Product

Dot product

Vector
a-b=lall lbll cosé o
a- b a- b
a1 = ||a|| cosf = ||a] ~ bl
lall o]l bl
\“] B = arccos(xz+y /121 1Yy|)
. ‘b b
| a — aih — a-b
|| {[b]]
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https://en.wikipedia.org/wiki/Dot_product

Vector Cross Product

Vector cross product

i j k
axb= a; a Qs
by by by
axb— a2 azj. a1 ﬂ-3j aq ﬂgk
b2 b3 by bg b1 bs
a x b = |a] b sin(é) n = (a2bs — azby)i — (a1bs — azb1)j + (a1by — agby )k
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https://en.wikipedia.org/wiki/Cross_product

2D Lines

A line in a 2D plane ar + by +c=0 e

=

It is parameterized by ] = (a,, b, c)T Homogeneous

Coordinates

k(a, b, C)T represents the same line for nonzero k

Line equation
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2D Lines
1 = (a,b,c)

Normalize by \/ a? + b2

N‘ " I = (g, Ny, d) = (A,d)

Normal vector Hﬁ” p— 1

\’ Distance to the origin d

N = (Ngy,Ny) = (cosb,sinb)

polar coordinates (97 d)
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Intersection of 2D Lines Vector cross product

1 = (a,b,c)"  V=(d,V,c)"
The intersectionis X —— l X l,

a x b = [laf [[b]sin(f) n

N 1/ . AN Lo
1-(Ix1)=1-1x1")=0 .
- - by by by
/
l X = l X = 0 Vector dot product

Ascalar a-b = |a| [[b| cos®
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A Line Joining two Points vector cross product

z !
X = y X, — y,
/ a x b = |al| |b||sin(f) n
l=x X x i j k
axb=l|a a a3
X'(XXX,):X,'(XXX,):O by by b
XTl = X/Tl . O Vector dot product

a-b = |all |b| cosé
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3D Plane

A 3D plane equation AT T by +cz+d=20
It is parameterized by (a, b, c, d)

Normal vector and distance

m = (fiy, Ay, Az, d) = (A, d)

il = (cos f cos ¢, sin 6 cos ¢, sin ¢)
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3D Lines

Any point on the line is a linear combination of two points

r=(1-A)p+2Xq

Using a line direction

r:p—l—/\a
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2D Transformations

D
y‘ / SlmlRQ pl‘OjeCtlve /
translation
_—7
ﬁ ~—_
. 4
Euclidean affine -
N— X
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2D Translation

'/ €T t. ,
| = X =x+t

Y Y Ly

Homogeneous coordinate

I t

X,:{I t}i _, B
X = X

T
2 %3 _O 1_

augmented vector )_( — (fE, y, 1) 3 X 3
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2D Euclidean Transformation

2D Rotation + 2D translation

cos 0

x' =Rx+t R=

sinf@ cosb

m’} B {msf’ —sinﬂ] [:’I!]
Yy sinf cosf ||y
x' = xzcosf — ysinb
y = xsinf + ycosb

—sin @

.

orthonormal rotation matrix

RR! =Tand |R| =1
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2D Euclidean Transformation

2D Rotation + 2D translation

;) R — cosf) —sinf
X = Rx + 1 sinf  cos@
I __ = . Degree of freedom (DOF)
— X 9
X R t * The maximum number of logically
) ) independent values
2 X 3 e 2D Rotation?
> — e 2D Euclidean transformation?
X = (x,y,1)
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2D Similarity Transformation

Scaled 2D rotation + 2D translation

X/ — sRx 1t R — Cf)SH —sin 6
_sm@ cos 6 |
_a —b t _
x = [SR t} X = Tl x
b a 1,

The similarity transform preserves angles between lines.

X

(z,9,1)
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2D Affine Transformation

Arbitrary 2x3 matrix
' — AR % = (1,,1)
X = X » Y5

/ aoo Ap1 Qo2 _

aip di11 Aai2

Parallel lines remain parallel under affine transformations.
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2D Affine Transformation Examples

T T o T 7 I
)L ERRN G BB St 4

Scaling along x Shearing along x _ Translation along x
10 0 10 0 (©) (9)]
[o 1.00} Vot {0 ] [-0.00 1 } + {0 ] [ n(6) Ol
MY MY
Scaling alongy Shearing alongy Rotation
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https://www.algorithm-archive.org/contents/affine_transformations/affine_transformations.html

2D Projective Transformation

Also called perspective transform or homography

~/ o ~ |
X = HX homogeneous coordinates

3 X 3 H is only defined up to a scale

v — hoox + ho1y + ho2 / hiox + h11y + P9

 hoox + hory + hao hoox + ha1y + haso

- ] ] ] transa/tign
Perspective transformations preserve straight lines ﬁv@%ﬁ
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Hierarchy of 2D Transformations

Transformation Matrix # DoF Preserves Icon
translation [I t] 2 orientation
2x3
rigid (Euclidean) [R t] 3 lengths O
2% 3
similarity [sR t] 4 angles O
2x3
affine _A_ 6 parallelism D
L 12%x3
projective H 8 straight lines E‘
L 13x3
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3D Translation

x’ X t.
vyl = |yl + |ty X =x+t
_z’ ) Z t,

x = [I t} X

3 x 4

augmented vector X —— (Qf, y, Z, 1)
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3D Rotation

The yaw, pitch, and roll rotations can be combined sequentially to attain
any possible 3D rotation.

Ay
(D
Yaw
R(a, 5,7) = Ry(a) R (8) R=(7)
p
‘ 0 1 0 0 0 si Pit h/\ L
0 0 1 0 sinf cosf —sina 0 cos« Y
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3D Euclidean Transformation SE(3)

3D Rotation + 3D translation

orthonormal rotation matrix
x' = Rx +t RR? =Tand |R| =1
i i 3 %3
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3D Similarity Transformation

Scaled 3D rotation + 3D translation

x' = sRx + t

‘= [sR t| % X =(z,y,2,1)
3 x4

This transformation preserves angles between lines and planes.

'S
|
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3D Affine Transformation

'S

|
S
e
-
S
p—t
p—t
S
ot
\V)
S
e
Qo
v

3 x 4

Parallel lines and planes remain parallel under affine transformations.
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3D Projective Transformation

Also called 3D perspective transform or homography

~/ o ~ |
X = HX homogeneous coordinates

4 X 4 H is only defined up to a scale

Perspective transformations preserve straight lines
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3D Transformations

Transformation Matrix # DoF Preserves Icon
translation [I t] 3 orientation
3 x4
rigid (Euclidean) [R t} 6 lengths O
3 x4
similarity [SR t} 7 angles O
3x4
affine _A_ 12 parallelism E
L 13x4
projective H o 15 straight lines |:|
L 14X
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Further Reading

Section 2.1, Computer Vision, Richard Szeliski

Chapter 2 and 3, Multiple View Geometry in Computer Vision, Richard
Hartley and Andrew Zisserman
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