

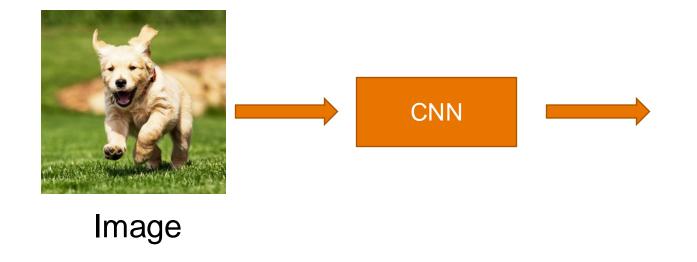
Recurrent Neural Networks

CS 6384 Introduction to Computer Vision Professor Yapeng Tian Department of Computer Science

Slides borrowed from Professor Yu Xiang

Single Images

Convolutional neural networks



High-level information

- Depth
- Object classes
- Object poses

• Etc.

Sequential Data

Data depends on time

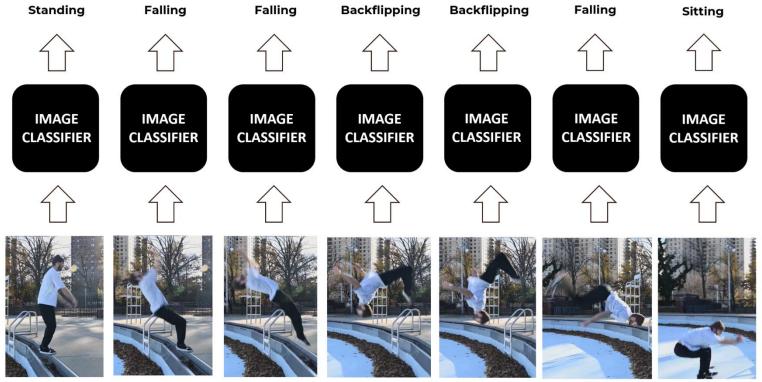
• Video

• Sentence

UT Dallas is a rising public research university in the heart of DFW.

Sequential Data Labeling

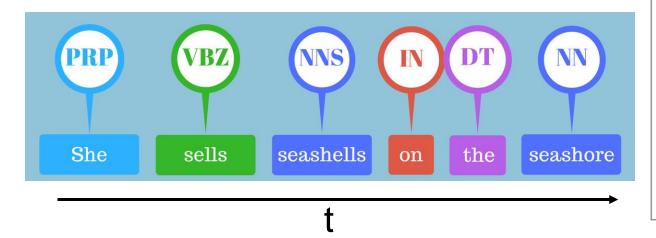
Video frame labeling



Frames of a Video https://bleedai.com/human-activity-recognition-using-tensorflow-cnn-lstm/

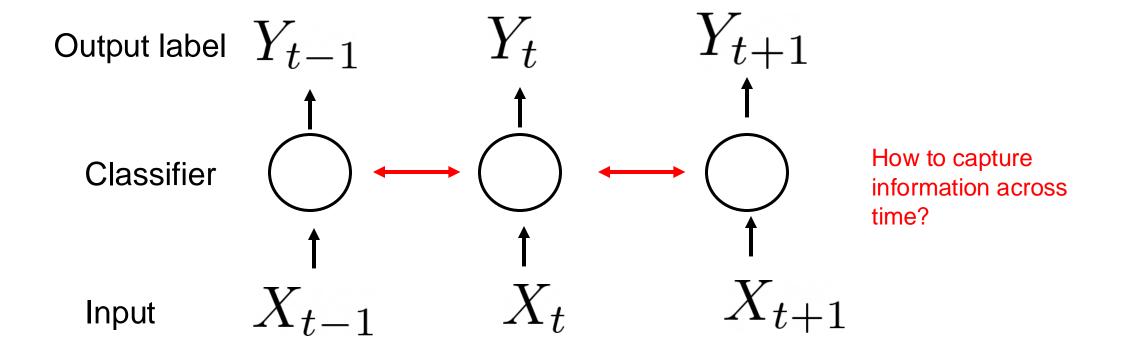
Sequential Data Labeling

Part-of-speech tagging (grammatical tagging)

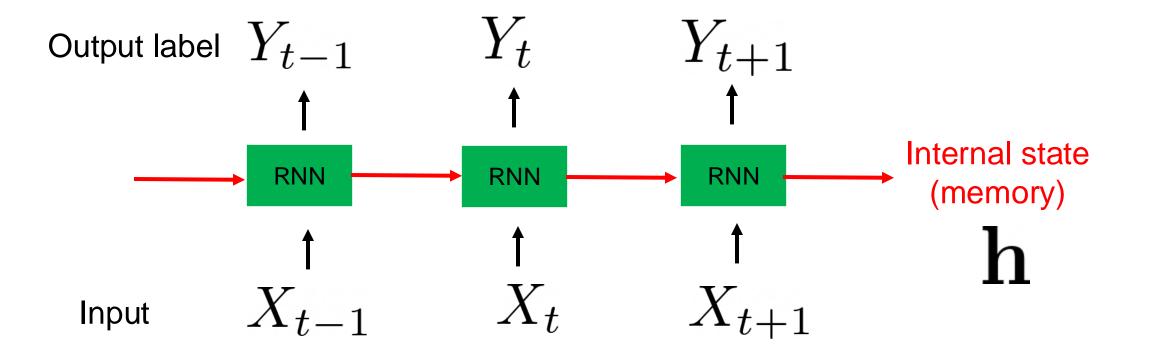


Tag	Meaning	English Examples
ADJ	adjective	new, good, high, special, big, local
ADP	adposition	on, of, at, with, by, into, under
ADV	adverb	really, already, still, early, now
CONJ	conjunction	and, or, but, if, while, although
DET	determiner, article	the, a, some, most, every, no, which
NOUN	noun	year, home, costs, time, Africa
NUM	numeral	twenty-four, fourth, 1991, 14:24
PRT	particle	at, on, out, over per, that, up, with
PRON	pronoun	he, their, her, its, my, I, us
VERB	verb	is, say, told, given, playing, would
•	punctuation marks	.,;1
х	other	ersatz, esprit, dunno, gr8, univeristy

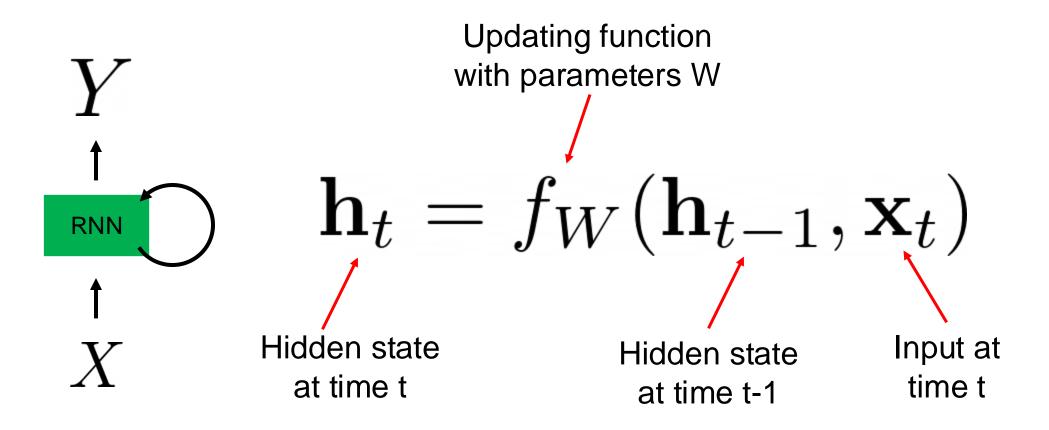
Sequential Data Labeling



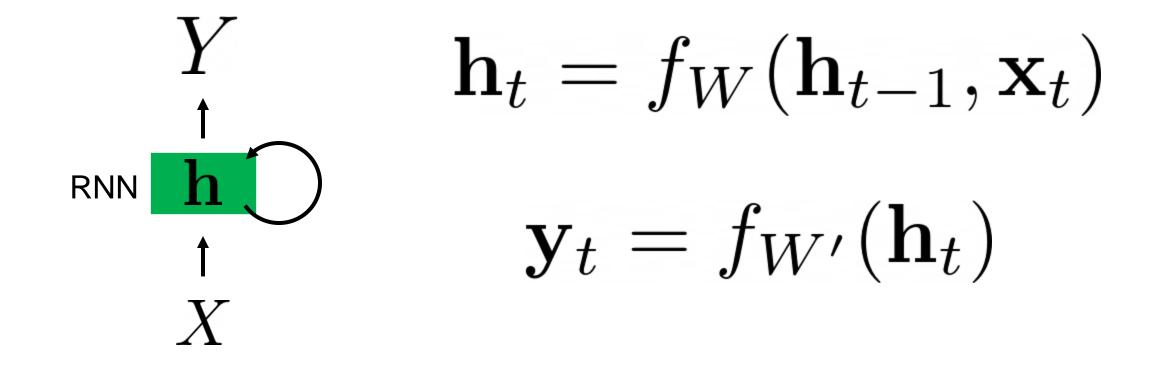
Recurrent Neural Networks



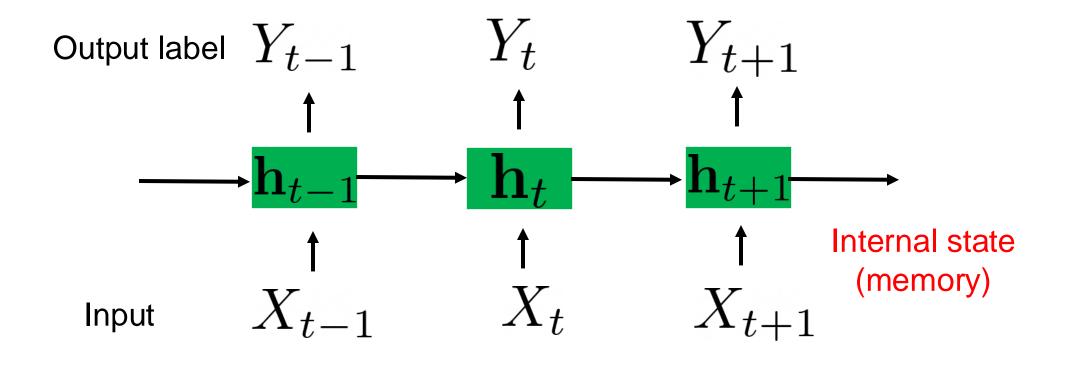
Hidden State Update



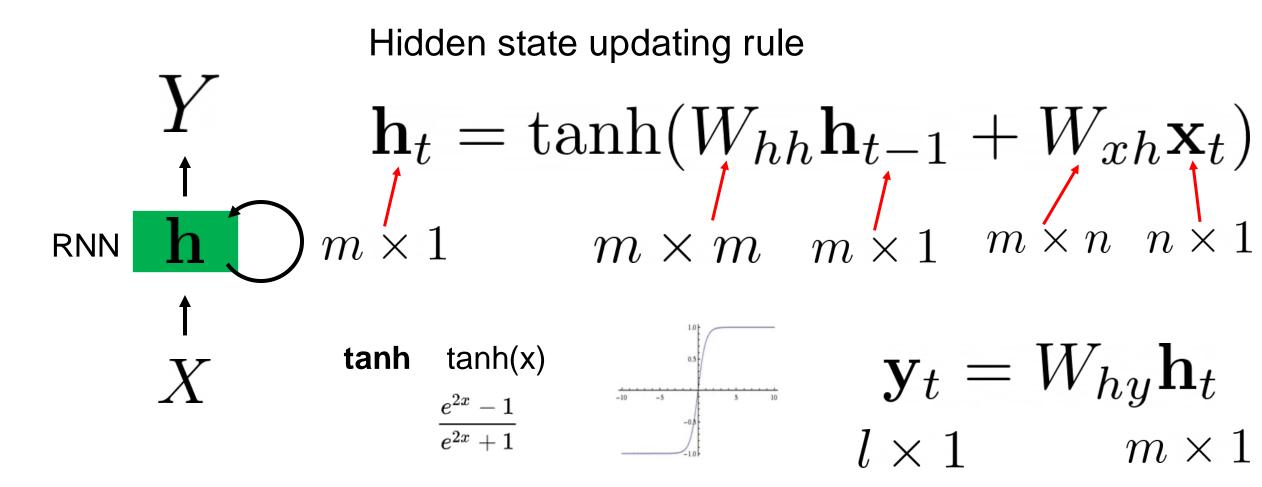
Using the Hidden State



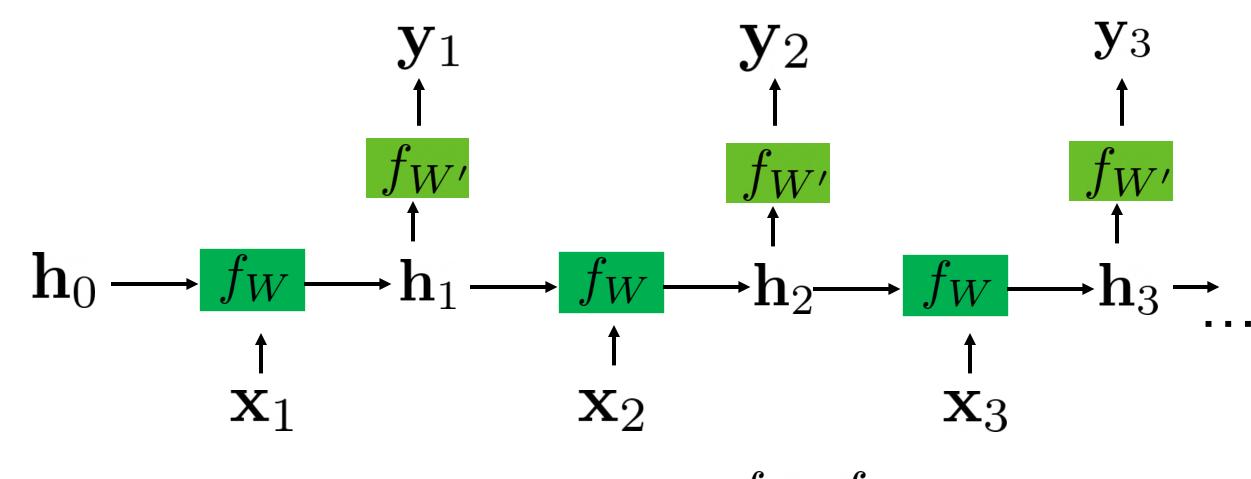
Recurrent Neural Networks



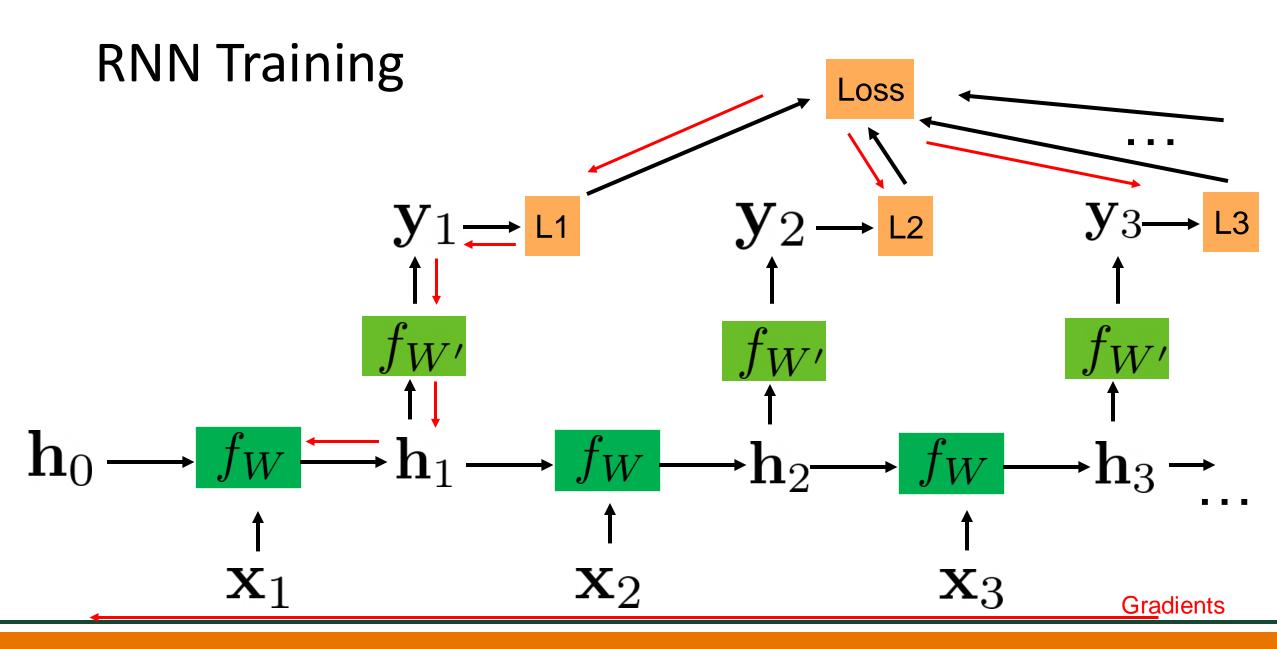
Vanilla RNN



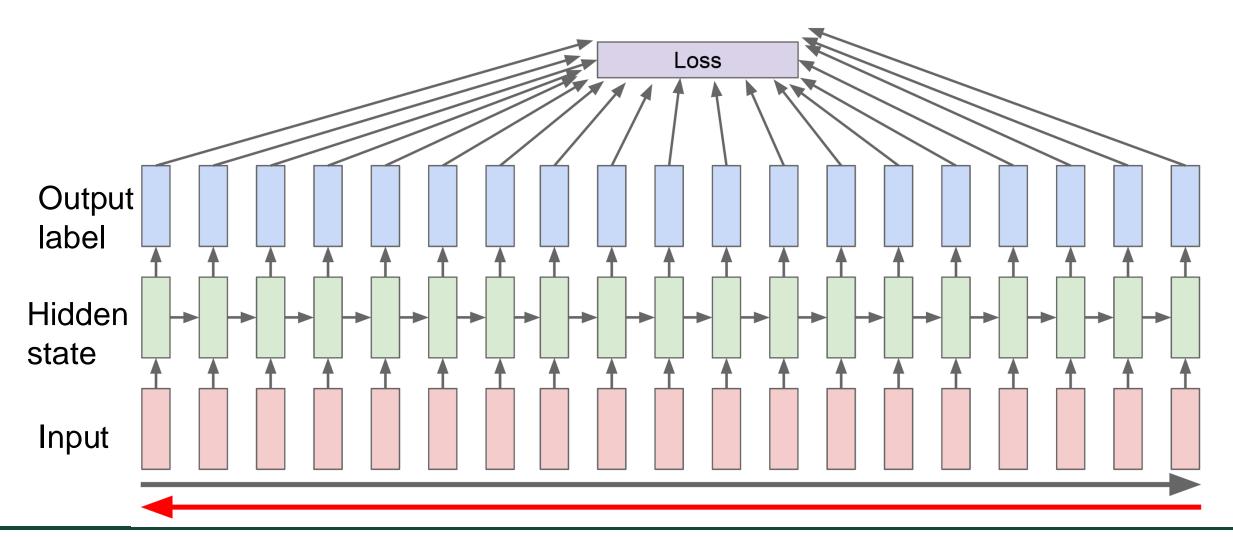
RNN Computation Graph



The same set of weights for different time steps $f_W f_{W^\prime}$



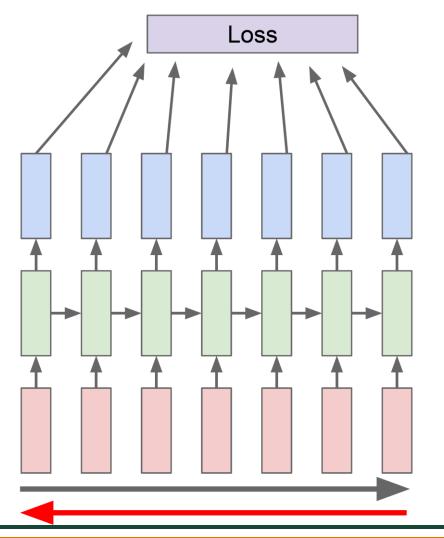
Backpropagation through Time



ID THE UNIVERSITY OF TEXAS AT DALLAS

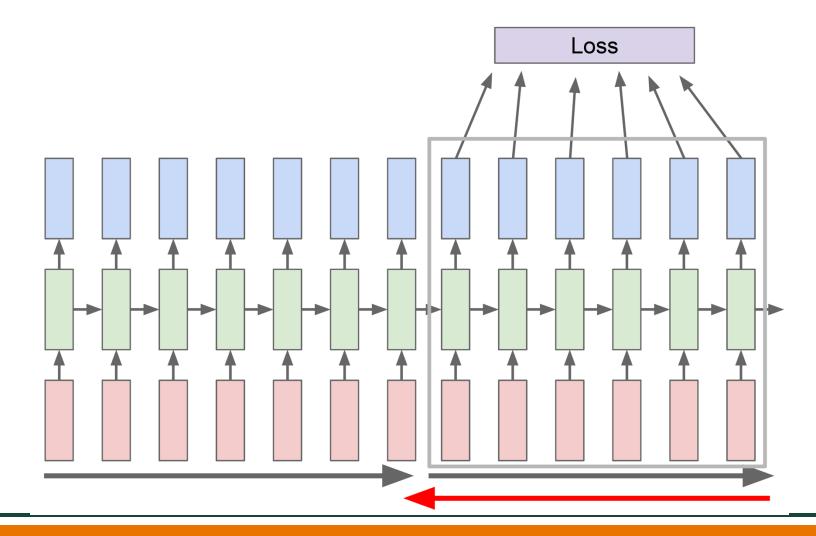
What is the problem in this training paradigm?

Truncated Backpropagation through Time

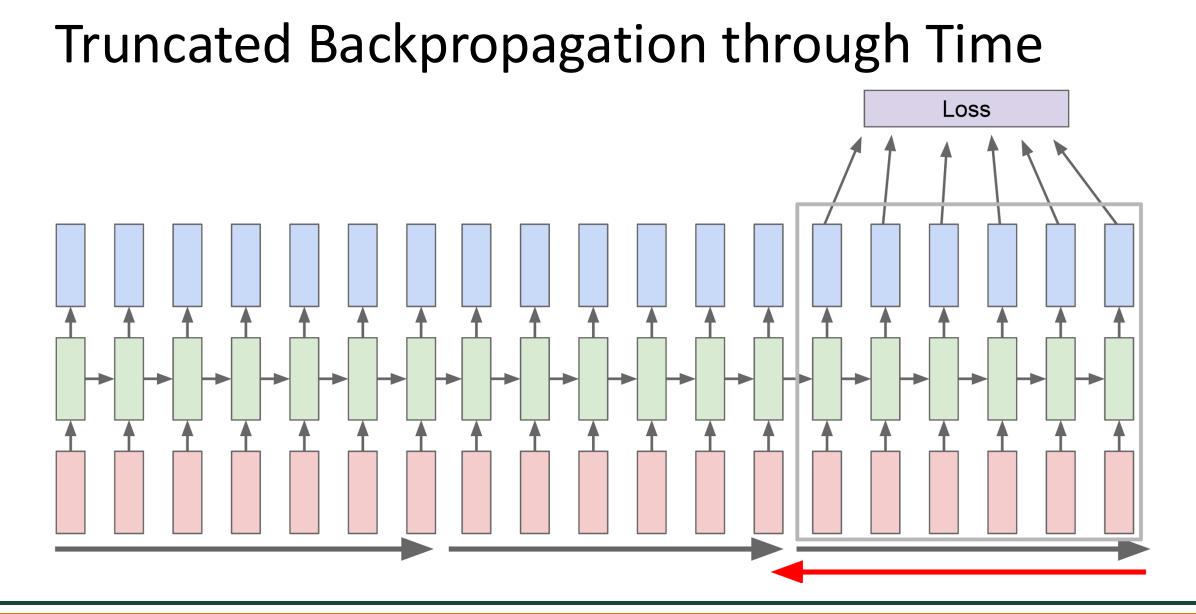


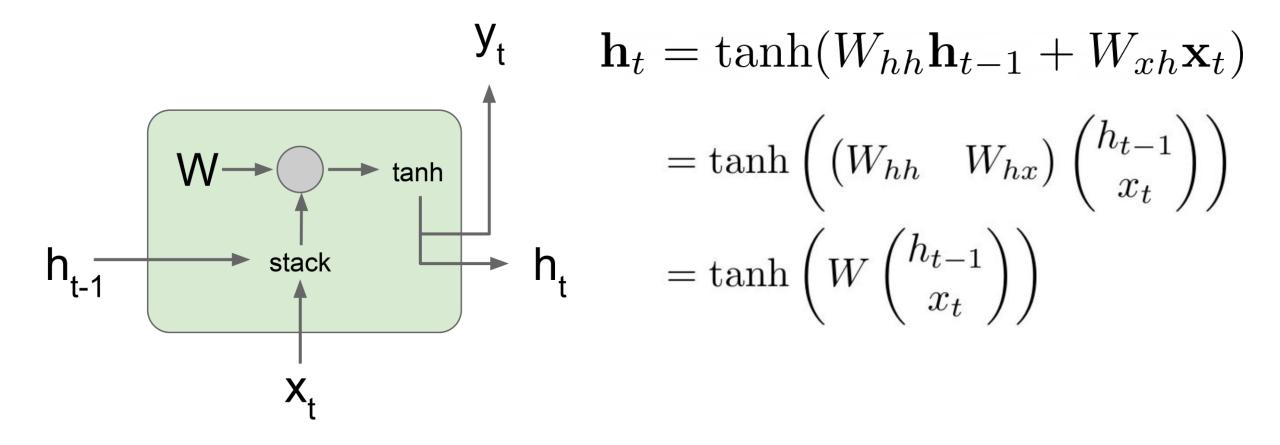
Run forward and backward through chunks of the sequence instead of whole sequence

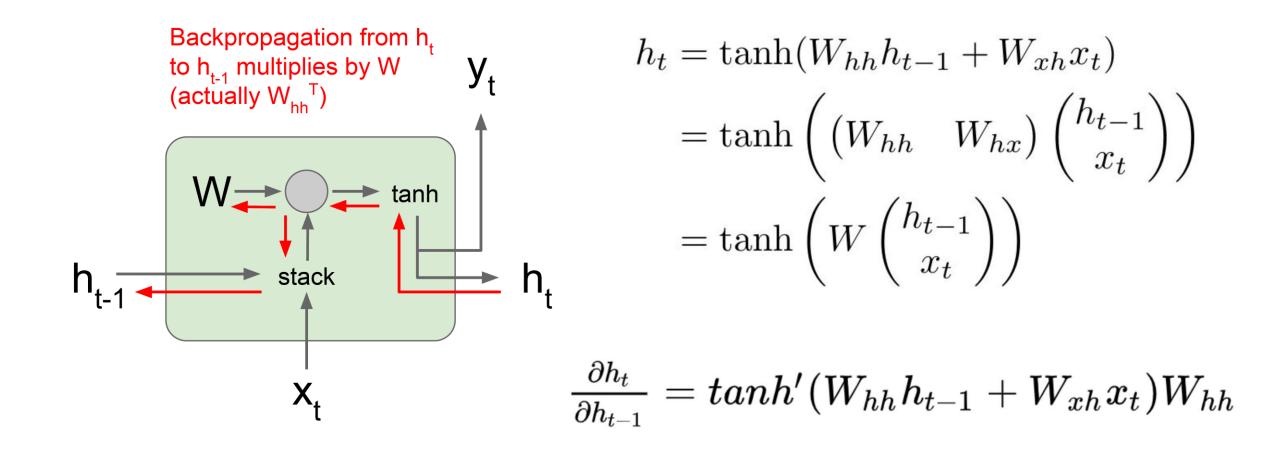
Truncated Backpropagation through Time

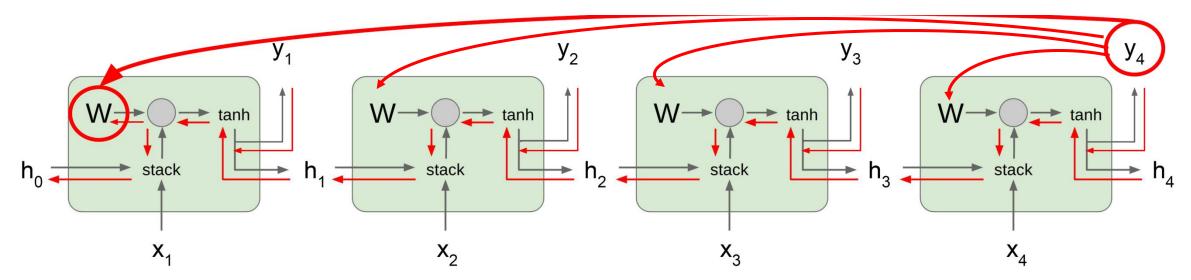


Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps

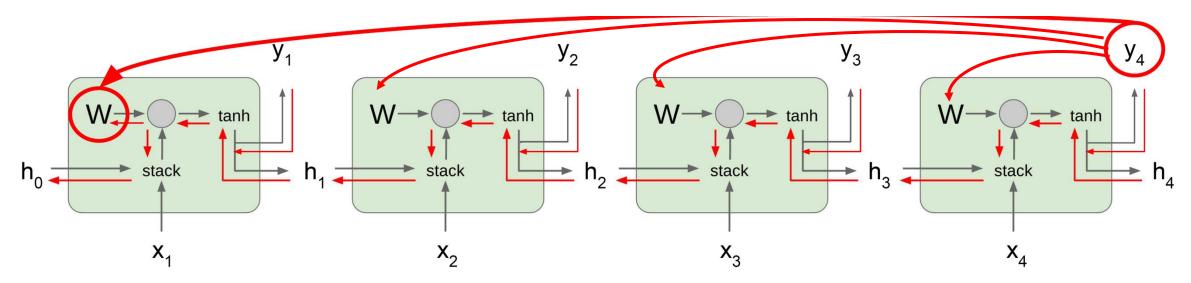








$$rac{\partial L}{\partial W} = \sum_{t=1}^{T} rac{\partial L_t}{\partial W}$$
 $rac{\partial L_T}{\partial W} = rac{\partial L_T}{\partial h_T} rac{\partial h_t}{\partial h_{t-1}} \dots rac{\partial h_1}{\partial W} = rac{\partial L_T}{\partial h_T} (\prod_{t=2}^{T} rac{\partial h_t}{\partial h_{t-1}}) rac{\partial h_1}{\partial W}$



$$rac{\partial L_T}{\partial W} = rac{\partial L_T}{\partial h_T} (\prod_{t=2}^T rac{\partial h_t}{\partial h_{t-1}}) rac{\partial h_1}{\partial W}$$

https://en.wikipedia.org/wiki/Matrix_norm

JNIVERSITY OF TEXAS AT DALLAS

- Vanishing gradients
- $\|\frac{\partial h_t}{\partial h_{t-1}}\|_2 < 1$

|2|

 ∂h_t

 ∂h_{t}

 Exploding gradients

Exploding gradients

$$\|\frac{\partial h_t}{\partial h_{t-1}}\|_2 > 1$$

• Gradient clipping

grad_norm = np.sum(grad * grad)
if grad_norm > threshold:
 grad *= (threshold / grad_norm)

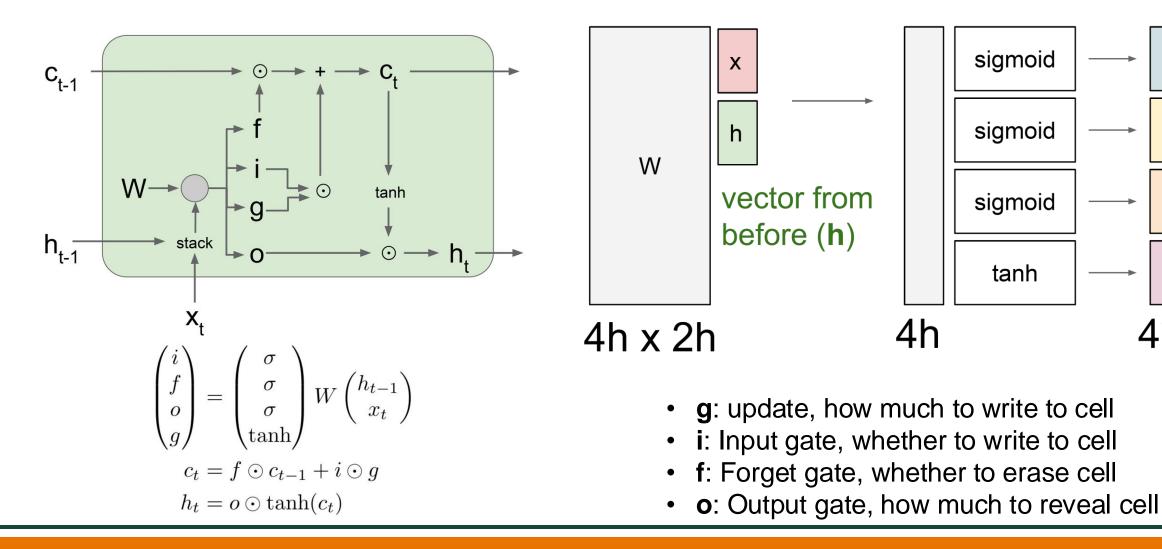
Vanishing gradients

$$\|\frac{\partial h_t}{\partial h_{t-1}}\|_2 < 1$$

• Change RNN architecture

Long Short Term Memory (LSTM)

Long Short Term Memory (LSTM)



0

g

4*h

sigmoid

sigmoid

sigmoid

tanh

4h

Long Short Term Memory (LSTM)

Make the RNN easier to preserve information over many steps

• E.g., f = 1 and i = 0

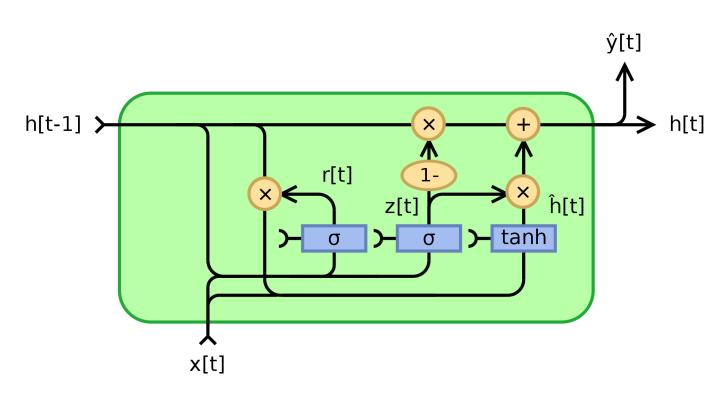
• This is difficult for vanilla RNN

LSTM does not guarantee that there is no vanishing or exploding gradient

It provides an easier way to learn longdistance dependencies

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$
$$c_t = f \odot c_{t-1} + i \odot g$$
$$h_t = o \odot \tanh(c_t)$$

Gated Recurrent Unit (GRU)



$$egin{aligned} & z_t = \sigma_g(W_z x_t + U_z h_{t-1} + b_z) \ & r_t = \sigma_g(W_r x_t + U_r h_{t-1} + b_r) \ & \hat{h}_t = \phi_h(W_h x_t + U_h(r_t \odot h_{t-1}) + b_h) \ & h_t = (1-z_t) \odot h_{t-1} + z_t \odot \hat{h}_t \end{aligned}$$

- x_t : input vector
- h_t : output vector
- \hat{h}_t : candidate activation vector
- z_t : update gate vector
- r_t : reset gate vector
- W, U and b: parameter matrices and vector

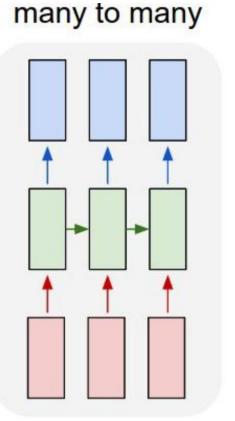
GRUs vs. LSTMs

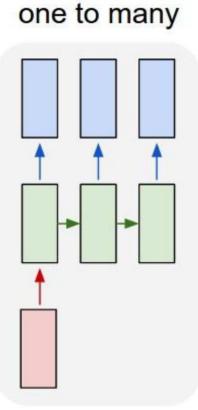
Both have a forget gate

GRU has fewer parameters, no output gate

GRUs have similar performance compared to LSTMs, have shown better performance on certain datasets

Recurrent Neural Networks

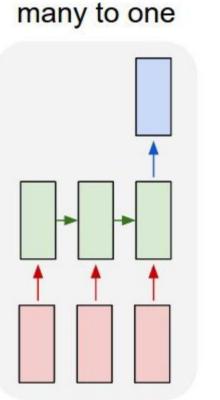




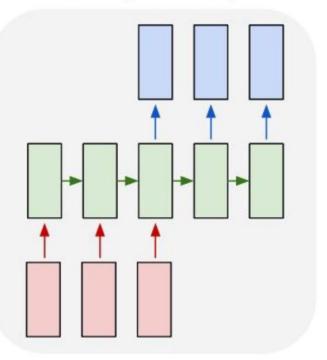
E.g., action recognition on video frames

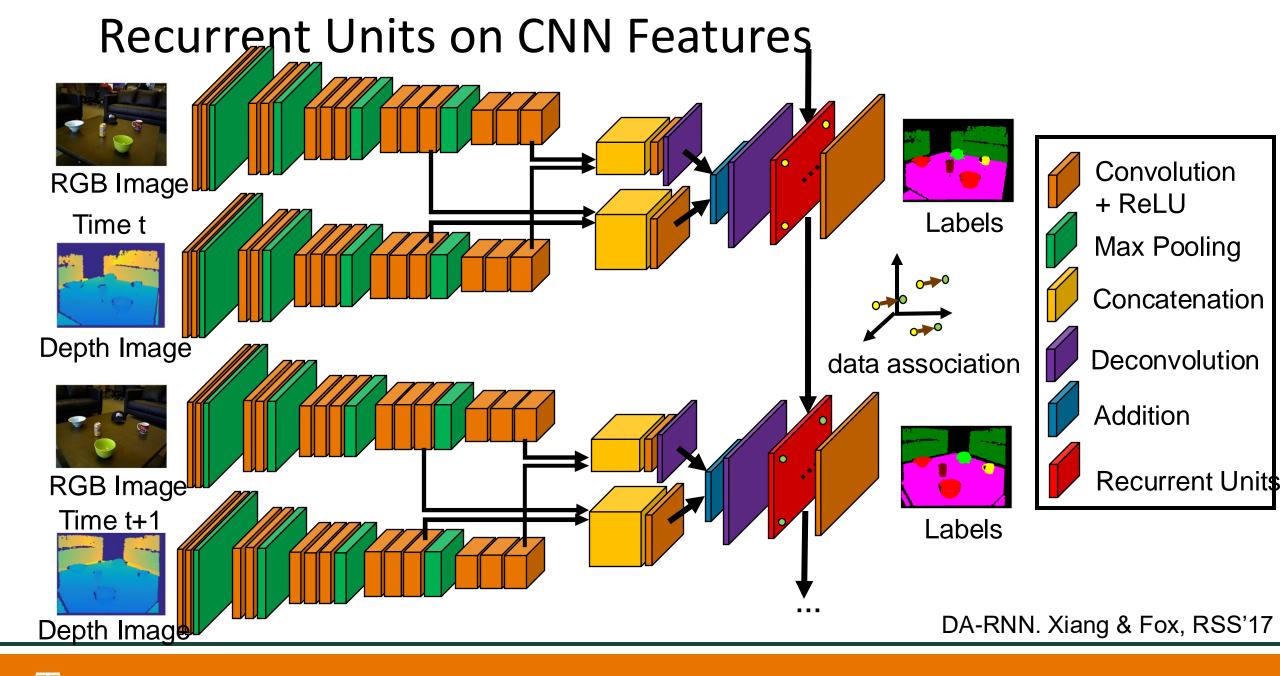
E.g., image captioning, image -> sequences of words

E.g., action prediction, sequences of frames -> action class E.g., Video Captioning Sequence of video frames -> caption



many to many





THE UNIVERSITY OF TEXAS AT DALLAS

Summary

RNNs can be used for sequential data to capture dependencies in time

LSTMs and GRUs are better then vanilla RNNs

It is difficult to capture long-term dependencies in RNNs

Use transformers (next lecture)

Further Reading

Deep Learning Textbook: Sequence Modeling: Recurrent and Recursive Nets https://www.deeplearningbook.org/contents/rnn.html

Stanford CS231n, lecture 10, Recurrent Neural Networks http://cs231n.stanford.edu/

Long Short Term Memory

https://www.researchgate.net/publication/13853244_Long_Shortterm_Memory

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Gated Recurrent Units https://arxiv.org/pdf/1412.3555.pdf